Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding.

نویسندگان

  • R Wyatt
  • J Moore
  • M Accola
  • E Desjardin
  • J Robinson
  • J Sodroski
چکیده

The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells

Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The mode...

متن کامل

Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies.

Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, ...

متن کامل

CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization.

Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD...

متن کامل

Association of structural changes in the V2 and V3 loops of the gp120 envelope glycoprotein with acquisition of neutralization resistance in a simian-human immunodeficiency virus passaged in vivo.

The in vivo passage of a neutralization-sensitive, laboratory-adapted simian-human immunodeficiency virus (SHIV-HXBc2) generated a pathogenic, neutralization-resistant virus, SHIV-HXBc2P 3.2. SHIV-HXBc2P 3.2 differs from SHIV-HXBc2 only in 13 amino acid residues of the viral envelope glycoproteins. Here we used antibody competition analysis to examine the structural changes that occurred in the...

متن کامل

The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner.

It is well documented that removal of the V1V2 region or of the V2 loop alone from the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) increases the susceptibility of these viruses to neutralization by antibodies. The specific role of the V1 loop in defining the neutralization susceptibility of HIV is, however, not well documented. Our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 69 9  شماره 

صفحات  -

تاریخ انتشار 1995